
Safety Testing for Autonomous Systems in Simulation
Published on SBIR.gov (https://www.sbir.gov)

Safety Testing for Autonomous Systems in Simulation

NOTE: The Solicitations and topics listed on this site are copies from the various SBIR agency
solicitations and are not necessarily the latest and most up-to-date. For this reason, you should use
the agency link listed below which will take you directly to the appropriate agency server where you
can read the official version of this solicitation and download the appropriate forms and rules.

The official link for this solicitation is: http://www.acq.osd.mil/osbp/sbir/solicitations/index.shtml

 Agency:
 Department of Defense

Release Date:
 November 20, 2013
 Branch:
 Office of the Secretary of Defense

Open Date:
 November 20, 2013
 Program / Phase / Year:
 SBIR / Phase I / 2014

Application Due Date:
 January 22, 2014

 Solicitation:
 2014.1

Close Date:
 January 22, 2014
 Topic Number:
 OSD14.1-AU4

Description:
 This topic is supported under National Robotics Initiatives (NRI). OBJECTIVE: The Army is interested
in adding autonomy to its vehicle convoys [1], but how can we certify that these autonomous
algorithms are safe? Currently, live testing of full vehicle systems is the only acceptable method, but
even after hundreds of hours of successful live testing, a single hidden failure point in the algorithms
would disprove the hypothesis that the proposed autonomous system is safe. Furthermore, live
testing can be cost prohibitive, and is (not surprisingly) far from exhaustive. Instead, we seek to
develop a safety testing environment (STE) that will exercise our current autonomy algorithms with
software/hardware in the loop in parallel with live testing that will validate the STE. DESCRIPTION:
Recent advancements in sensor simulation tools [2] have improved our ability to model radar, lidar,
camera, and GPS with software/hardware in the loop. Of course, our ability to model the physics of
heavy trucks [3] is quite mature as well. To address the challenge of developing the STE, we will
provide our autonomy algorithms as Government Furnished Equipment (GFE). The focus of this topic
is: 1) to build an environment that mirrors actual test data to provide a departure point for Monte
Carlo simulations. 2) research the failure modes for autonomy algorithms within the capabilities of
current sensor models and 3) simulate the corner cases that would exercise these failure modes.
This topic is not focused on improving physics-based simulation of heavy trucks or building better
sensor models. Neither do we seek to develop new algorithms for autonomous behavior, but rather
to leverage existing GFE autonomy algorithms to study the open research question of how we can
test these algorithms in simulation, and certify that they are safe to the fullest extent possible within
current simulation environments. PHASE I: In Phase I we seek a System Architecture for the Safety
Testing Environment (STE). This prototype STE may be outlined with cursory autonomy algorithms

Page 1 of 2

Safety Testing for Autonomous Systems in Simulation
Published on SBIR.gov (https://www.sbir.gov)

rather than with the GFE algorithms. Define sensor models, processor and software requirements.
Propose metrics for highlighting the impact and reliability of the STE. Provide a detailed concept of
operations (CONOPS) and overview (OV) graphics. PHASE II: Integrate GFE algorithms into a fully
functional STE of an operationally relevant scenario such collision mitigation braking, adaptive cruise
control, or lane departure, etc. We desire a model of a M915 or Marine Corps AMK23 Cargo Truck for
the STE. Demonstrate the effectiveness of this STE within the metrics defined in Phase I. The STE
should be able to simulate ambient noise, sunlight, occlusions between the following and leading
vehicle and fully simulate radar, lidar, camera and GPS. The objective is a full military environment.
PHASE III: Work to have the proposed system become a part of the AMAS program.

Page 2 of 2

